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We consider the problem of a revenue-maximizing seller with m items for sale to n additive bidders with hard
budget constraints, assuming that the seller has some prior distribution over bidder values and budgets. The prior
may be correlated across items and budgets of the same bidder, but is assumed independent across bidders. We
target mechanisms that are Bayesian Incentive Compatible, but that are ex-post Individually Rational and ex-post
budget respecting. Virtually no such mechanisms are known that satisfy all these conditions and guarantee any
revenue approximation, even with just a single item. We provide a computationally efficient mechanism that is
a 3-approximation with respect to all BIC, ex-post IR, and ex-post budget respecting mechanisms. Note that the
problem is NP-hard to approximate better than a factor of 16/15, even in the case where the prior is a point
mass [Chakrabarty and Goel 2010]. We further characterize the optimal mechanism in this setting, showing that
it can be interpreted as a distribution over virtual welfare maximizers.

We prove our results by making use of a black-box reduction from mechanism to algorithm design developed
by [Cai et al. 2013]. Our main technical contribution is a computationally efficient 3-approximation algorithm for
the algorithmic problem that results by an application of their framework to this problem. The algorithmic problem
has a mixed-sign objective and is NP-hard to optimize exactly, so it is surprising that a computationally efficient
approximation is possible at all. In the case of a single item (m = 1), the algorithmic problem can be solved exactly
via exhaustive search, leading to a computationally efficient exact algorithm and a stronger characterization of
the optimal mechanism as a distribution over virtual value maximizers.

Categories and Subject Descriptors: Theory of computation [Algorithmic game theory and mechanism de-
sign]: Computational pricing and auctions

General Terms: Algorithms, Economics, Theory

Additional Key Words and Phrases: Revenue optimization, budget constraints, virtual welfare, generalized assign-
ment problem

1. INTRODUCTION
Most of auction theory crucially depends on the assumption of quasi-linear utilities, that the
utility is equal to valuation minus payments. This assumption fails when bidders are bud-
get constrained.1 Auctions with budget constrained bidders are commonplace, and promi-
nent examples of this are ad-auctions and auctions for government licensing such as the
FCC spectrum auction. An interesting example of budget constraint occurs in the auction
for professional cricket players in the Indian Premier League: the league imposes a budget
constraint on all the teams as a means of ensuring well balanced teams. Another source of
budget constraints is what Che and Gale [1998] call the moral hazard problem: procure-
ment is often delegated and budget constraints are imposed as a means of controlling the
spend. A budget represents the bidder’s ability to pay, in contrast to the valuation which
represents his willingness to pay. For this reason, budgets may be more tangible and easier

1The terms financially constrained bidders or bidders with liquidity constraints are used synonymously.
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to estimate than valuations. It is therefore important to understand how budget constraints
impact the design of auctions; this has been well established by now [Che and Gale 1998;
Pai and Vohra 2014; Benoit and Krishna 2001; Laffont and Robert 1996; Maskin 2000;
Malakhov and Vohra 2005; Che and Gale 2000; Bhattacharya et al. 2010].

The theory of auctions in the presence of budget constraints on bidders lags far behind the
theory of auctions without budgets. For instance, consider the design of optimal (revenue
maximizing) auctions that are Bayesian incentive compatible (BIC) and ex-post individu-
ally rational (IR). While Myerson [1981] gives a beautiful theory characterizing the optimal
auction for any single parameter domain, no such characterization is known in the presence
of private budgets (that could be correlated with the valuation). As a way to deal with this
difficulty, previous papers have considered special cases and auctions with a subset of the
desired properties. (See Section 1.2 for details.) We adopt the Computer Science approach of
approximation, while incorporating all the desired properties. The main result of this paper
is a 3-approximation to the optimal auction in the class of auctions that are

— BIC,
— ex-post IR and
— ex-post budget respecting, with private budgets that could be correlated with the valua-

tions,

for multiple heterogenous items and additive valuations. This is the first constant factor
approximation for this class of auctions. Moreover, the computational problem, even with-
out any incentive constraints is already NP-Hard to approximate within a ratio of 16/15
[Chakrabarty and Goel 2010]. This too suggests that an approximation is necessary.

1.1. Overview of Techniques
We prove our main result by making use of an algorithmic framework developed in [Cai
et al. 2013]. The computational aspect of their framework provides a black-box reduction
from a wide class of Bayesian mechanism design problems to problems of purely algo-
rithm design. More specifically, they show that any α-approximation algorithm for a certain
incentive-free algorithmic problem (induced by the mechanism design problem at hand) can
be leveraged to find a BIC, IR mechanism that is also an α-approximation (to the optimal
BIC, IR mechanism) in polynomial time. Significant further details on their reduction and
how to employ it can be found in Section 2.1. After applying their framework to our prob-
lem, there is still the issue of solving the algorithmic problem that pops out of the reduction.
This turns out to be essentially a (virtual) welfare maximization problem (without budgets),
but where bidder types are somewhat involved. The optimization involves a mixed sign ob-
jective (i.e. the objective is a sum of several terms which can be positive or negative). Such
optimization problems are typically solvable exactly in polynomial time or computationally
hard to approximate within any finite factor, but rarely in between (due to the mixed signs
in the objective). Interestingly, we obtain a 3-approximation for our mixed-sign objective
problem despite the fact that it is NP-hard to optimize exactly. The design and analysis of
our algorithm can be found in Section 3.

Cai et. al.’s framework also contains a structural result. We use it to show that the optimal
auction in our setting is a distribution over virtual welfare maximizers. By this, we mean
that the optimal mechanism maintains a distribution over n mappings, one mapping per
bidder that maps types to virtual types, and, given a vector of reported types, it samples
n mappings from this distribution, uses them to map the reported types to virtual types,
and proceeds to choose an allocation that optimizes virtual welfare. Note that by virtual
types in the previous sentence we do not mean the specific virtual types as computed by
Myerson’s virtual transformation, which aren’t even defined for multi-dimensional types,
but just some virtual types that may or may not be the same as the true types. In particular,
each mapping in the support of the mechanism’s distribution will take as input a type
(which is an additive function with non-negative item values plus a non-negative budget),
and output a virtual type without a budget constraint and whose valuation function is the



sum of a budgeted-additive function2 with non-negative item values (which depends on the
input type in a very structured way) plus an additive function with possibly negative item
values (which may be unstructured with respect to the input type). We provide a formal
statement of this structural claim in Section 3 as well. Note that for the special case of a
single item auction, this gives a particularly simple structure: the virtual types are now
just a single (possibly negative) real number, which could be interpreted as a virtual value.
The optimal auction simply maps reported types to virtual values and assigns the item to
the bidder with the highest virtual value.

1.2. Related Work
The result that comes closest to characterizing the optimal auction is that of Pai and Vohra
[2014]: they characterize the optimal budget respecting BIC auction for a single item. Their
auction is implemented as an all-pay auction and is therefore not ex-post IR. They show
that the optimal BIC, interim IR mechanism that respects budgets ex-post takes on a form
similar to Myerson’s, but with additional pooling to enforce that no bidder is asked to pay
more than her budget, while also maintaining that no bidder has incentive to underreport
their budget. Earlier, Laffont and Robert [1996] and Maskin [2000] considered the case
where valuations are private information but budgets are common knowledge and identical.
Malakhov and Vohra [2005] study the setting where there are two bidders, one has a known
budget constraint while the other does not. Che and Gale [2000] characterize the optimal
pricing scheme for a single item with a single bidder, with private valuation and budget that
could be correlated with each other. The limited special cases considered by these papers
point to the difficulty of characterizing the optimal auction, which motivates the search for
efficient approximations.

Another line of work ranks different auction formats by the revenue generated in the
presence of budgets. Che and Gale [1998] compare first price, second price and all-pay auc-
tions, while Benoit and Krishna [2001] compare sequential and simultaneous auctions.

In the computer science tradition, [Bhattacharya et al. 2010] give a 4-approximation for
multiple items with additive valuations, but they assume that the budgets are publicly
known, and the auction is not ex-post IR. Chawla et al. [2011] give a 2-approximation in a
single parameter domain, but assume that the budgets are public. They also consider pri-
vate budgets, where budgets and values are independently distributed, in single parameter
matroid domains, and MHR Distributions, and give a 3(1 + e)-approximation. Finally, Cai
et al. [2012], provide exactly optimal mechanisms for multiple items, additive valuations
and private budgets, but their auctions are interim-IR. Once again, all these auctions make
additional assumptions when compared to us.

Cai et al. [2013] give a general reduction from mechanism design to algorithm design,
which we use for our results. For the special case of a single item auction with private bud-
gets, we show that the algorithmic problem obtained through this reduction is quite easy
to solve optimally, resulting in exactly optimal single-item auctions with budgets. How-
ever, when there are multiple items the resulting algorithmic problem becomes NP-Hard
[Chakrabarty and Goel 2010]. We give a 3-approximation to this algorithmic problem which
through the reduction gives a 3-approximately optimal multi-item auction with budgets.
Recently, [Bhalgat et al. 2013] showed that (a weaker form of) the reduction of Cai et al.
[2013] could be obtained using the simpler multiplicative weight update method instead of
the ellipsoid algorithm used originally, and consider the variant of our setting where the
items are divisible. The algorithmic problem in this case is once again easy. Daskalakis
and Weinberg [2015] also use the reduction in [Cai et al. 2013] to design an auction for a
non-linear objective, namely the makespan of an assigment of jobs to machines.

2A function v(·) is budgeted-additive if there exists a b such that v(S) = min{b,
∑

i∈S v({i})} for all S. Note that
this is different from an additive buyer with a budget, and that a budgeted-additive buyer indeed has quasi-linear
utilities.



The auction design problem has also been considered in a worst-case model, as opposed
to a Bayesian model. A standard framework is that of competitive auctions, where a bound
is shown on the ratio of the revenue of an optimal auction to the revenue of the given auc-
tion on any instantiation of valuations and budgets. Borgs et al. [2005] and Abrams [2006]
give constant competitive auctions for multi-unit auctions, under an assumption of bidder
dominance, that the contribution of a single bidder to the total revenue is sufficiently small.
[Devanur et al. 2013] give constant competitive auctions for single parameter downward-
closed domains with a public, common budget constraint. Since the worst-case setting is
decidedly more difficult than the Bayesian setting, these results are not comparable to
ours. Another line of work considers the design of Pareto-optimal auctions: Dobzinski et al.
[2008] characterize single item auctions that are Pareto-optimal, with public budgets and
show an impossibility of a similar auction for private budgets. Goel et al. [2012] extend this
auction to a more general poly-matroidal setting.

1.3. Conclusions and Future Work
The goals of revenue-optimality, ex-post individual rationality, and ex-post budget feasi-
bility seem to be at odds with one another. This is highlighted by the fact that, prior to
our work, no known auctions even approximately satisfied all three conditions, even with
just a single item and private budgets that are independent of values. We provide a com-
putationally efficient 3-approximation for the significantly more general case of auctions
for multiple heterogeneous goods and additive bidders with private budgets that can be
correlated with their values. While this model is already quite general compared to the
previous state-of-the-art, it is an important direction to see if our results can be extended
to more complex classes of bidder valuations, or to more complex constraints on feasible
allocations. In particular, well studied classes of valuations such as gross substitutes would
be interesting next steps.

2. PRELIMINARIES
We begin with formal definitions of the mechanism design problem we study. We then out-
line the reduction of Cai et al. [2013] (Section 2.1) and its implications (Section 2.2) for
our problem. Finally we state a related problem (Section 2.3), the Generalized Assignment
Problem, which we use in the design of our algorithm.

Bidders. There are n bidders, each with additive valuations over m items and a hard
budget constraint. Specifically, bidder i has value vij for item j, value

∑
j∈S vij for set S,

and hard budget bi. We denote by ~vi the vector of bidder i’s values for all m items. We
denote by Di the joint distribution of (~vi, bi). We denote by D = ×iDi the joint distribution
of all bidders’ valuations and budgets.

Mechanisms. Our goal is to design Bayesian Incentive Compatible (BIC) mechanisms that
are ex-post Individually Rational (IR) and that respect budgets ex-post. Formally, for a
(randomized) mechanism M , we can denote by xMij (~v,~b, r) to be 1 if bidder i receives item j

when the profile of values/budgets reported to M is (~v,~b) and the random seed used by M
is r, or 0 otherwise. Similarly, we denote by qMi (~v,~b, r) to be the price paid by bidder i in the
same conditions. We can then define the interim allocation probability πMij (~vi, bi) to be the
probability that bidder i receives item j when reporting (~vi, bi) over the randomness of other
agent’s (valuation,budget)s (~v−i,~b−i) being drawn from D−i, and any randomness in M . We
can similarly define the interim price pMi (~vi, bi) to be the expected payment made by bidder
i over the same randomness. Formally, πMij (~vi, bi) = E(~v−i,~b−i)←D−i,r

[xMij (~vi;~v−i, bi;~b−i, r)] and

pMij (~vi, bi) = E(~v−i,~b−i)←D−i,r
[qMij (~vi;~v−i, bi;~b−i, r)]. Formal definitions of BIC, IR, and ex-post

budgets are below.



Definition 2.1. (Bayesian Incentive Compatible) A mechanism M is BIC if for all bidders
i, and types (~vi, bi), (~v

′
i, b
′
i) the following holds:

~vi · ~πMi (~vi, bi)− pMi (~vi, bi) ≥ ~vi · ~πMi (~v′i, b
′
i)− pMi (~v′i, b

′
i).

A mechanism is said to be ε-BIC if for all bidders i, and types (~vi, bi), (~v
′
i, b
′
i) the following

holds:

~vi · ~πMi (~vi, bi)− pMi (~vi, bi) ≥ ~vi · ~πMi (~v′i, b
′
i)− pMi (~v′i, b

′
i)− ε.

Definition 2.2. (Interim/Ex-Post Individually Rational) A mechanism M is interim IR if
for all bidders i, and types (~vi, bi) the following holds:

~vi · ~πMi (~vi, bi) ≥ pMi (~vi, bi).

Further, it is ex-post IR if for all bidders i, all profiles (~v,~b) and random seeds r, we have:

~vi · ~xMi (~v,~b, r) ≥ qMi (~v,~b, r).

Definition 2.3. (Ex-Post Budget Respecting) A mechanism M respects budgets ex-post if
for all type profiles (~v,~b), all random seeds r, and all bidders i we have:

qMi (~v,~b, r) ≤ bi.
Definition 2.4. (No Positive Transfers) A mechanism M has no positive transfers if for

all type profiles (~v,~b), all random seeds r, and all bidders i we have:

qMi (~v,~b, r) ≥ 0.

2.1. Reduction from Mechanism to Algorithm Design
In recent work, [Cai et al. 2013] provide an algorithmic framework for mechanism design,
showing how to design mechanisms by solving purely algorithmic problems. We use this
reduction to reduce our mechanism design problem to an algorithm design problem and
show a 3-approximation to this algorithmic problem. In the rest of this section, we state
the general formulations of the mechanism design and the corresponding algorithm design
problems considered by Cai et al. [2013]. Then we give the precise statement of their reduc-
tion, and a structural characterization of the optimal mechanism obtained as a byproduct
of their reduction. Finally we instantiate these to state the corresponding problems in our
setting, and massage the resulting problems to simplify them.

[Cai et al. 2013] call the mechanism design problems of study BMeD(F ,V,O),3 where
feasibility constraints F , possible valuations V, and optimization objective O parameterize
the problem. Formally, this problem is defined as:

BMeD(F ,V,O):
INPUT: For each bidder i ∈ [n], a finite set Ti ⊆ V, and a distribution Di over Ti, presented
by explicitly listing all types in Ti and their corresponding probability.
OUTPUT: A feasible (selects an allocation in F with probability 1), BIC, (interim) IR
mechanism for bidders drawn from D = ×iDi.
GOAL: Find the mechanism that optimizes O in expectation, with respect to all BIC, IR
mechanisms (when bidders with types drawn from D play truthfully).
APPROXIMATION: An algorithm is said to be an (ε, α)-approximation if it finds an ε-BIC
mechanism whose expected value of O (when bidders drawn from D report truthfully) is at
least α ·OPT− ε.

In our problem, the feasible allocations are those that award each item to at most one
bidder. So we could denote the set of feasible allocations as [m + 1]n (with the convention

3BMeD stands for Bayesian Mechanism Design.



that selecting the allocation ~a awards item j to bidder aj if aj > 0, or no one if aj = 0). The
possible bidder types are all additive functions over items (with non-negative multipliers),
and non-negative budgets, which we could denote by Rm+1

+ . Our objective is revenue. To
ensure that all feasible mechanisms are ex-post IR (note that their reduction only guar-
antees interim IR without extra work) and ex-post budget respecting, we will define the
objective function REVENUE as follows. REVENUE takes as input a valuation profile (~v,~b),
an allocation ~x (where xij = 1 iff bidder i is awarded item j), and a price vector ~p. We define
REVENUE(~v,~b, ~x, ~p) =

∑
i pi, if 0 ≤ pi ≤ min{bi, ~vi · ~xi} for all i, or REVENUE(~v,~b, ~x, ~p) = −∞

otherwise.
Informally, the main result of [Cai et al. 2013] states that, for all F ,V,O, the problem

BMeD(F ,V,O) can be solved in polynomial time with black-box access to a poly-time
algorithm for a purely algorithmic problem that they call GOOP(F ,V,O).4 Below, V×
denotes the closure of V under addition and (possibly negative) scalar multiplications (so
for instance, (Rm+ )× = Rm).

GOOP(F ,V,O):
INPUT: A type ti ∈ V, multiplier mi ∈ R, and virtual valuation function gi ∈ V× for each
i ∈ [n].5
OUTPUT: An allocation x ∈ F and price vector ~p ∈ Rn+.
GOAL: Find arg maxx∈F,~p{O(~t, x, ~p) +

∑
imipi +

∑
i gi(x)}.

APPROXIMATION: (x∗, ~p∗) is said to be an α-approximation if O(~t, x∗, ~p∗) +
∑
imip

∗
i +∑

i gi(x
∗) ≥ α · arg maxx∈F,~p{O(~t, x, ~p) +

∑
imipi +

∑
i gi(x)}.

Further below we provide much more detail on the structure of the algorithmic focus of
this paper, GOOP([n + 1]m,Rm+1

+ ,REVENUE), but we first conclude our discussion of the
reduction we employ. The main result of [Cai et al. 2013] states that for all ε > 0, an
(ε, α)-approximation for BMeD(F ,V,O) can be obtained from a poly-time α-approximation
for GOOP(F ,V,O). The additive error (and failure probability in the theorem statement) is
due to a sampling procedure in the execution of the reduction. We provide a full statement
of their main result below.6

THEOREM 2.5. (Theorem 4 of [Cai et al. 2013]) For all F ,V,O, and ε > 0, if there
is a poly-time α-approximation algorithm, G, for GOOP(F ,V,O), there is a poly-time
(ε, α)-approximation algorithm for BMeD(F ,V,O) as well. Specifically, if ` denotes the in-
put length of a BMeD(F ,V,O) instance, the algorithm runs in time poly(`, 1/ε), makes
poly(`, 1/ε) black box calls to G on inputs of size poly(`, 1/ε), and succeeds with probabil-
ity 1− exp(−poly(`, 1/ε)).

[Cai et al. 2013] prove Theorem 2.5 above by considering a linear program that optimizes
over the space of interim forms that are both truthful (that satisfy the linear constraints in
Definitions 2.1 and 2.2), and feasible (those that correspond to an actual mechanism that
selects an outcome x ∈ F on every profile with probability 1).7 Linear constraints enforcing
that an interim form is BIC and interim IR can be written explicitly, but a computation-
ally efficient separation oracle for the space of feasible interim forms is still required in
order to solve the linear program. They show how to obtain such a separation oracle with
black-box access to an algorithm that solves GOOP, and that this entire process preserves
approximation as well.

4GOOP stands for Generalized Objective Optimization Problem.
5For other applications, the inputs gi(·) are sometimes called instead cost functions.
6The theorem statement is identical in content, but reworded for clarity and cleanliness.
7In fact, they need to work with a generalization of interim forms, called implicit forms, to accommodate non-
additive valuations. But we describe their proof for additive valuations for clarity of exposition, and because it is
relevant for our setting.



[Cai et al. 2013] further provide a structural characterization of the space of all fea-
sible mechanisms (truthful or not), leading to a structured implementation of whatever
interim form is output by the LP. Specifically, they show that the extreme points of the
space of feasible interim forms correspond to mechanisms that associate a virtual valu-
ation function gi(ti)(·) and price multiplier mi(ti) to each type ti ∈ Ti, and then selects
on profile (t1, . . . , tn) the allocation and price vector that solves GOOP on input t1, . . . , tn,
m1(t1), . . . ,mn(tn),

∑
i gi(ti)(·). They show further that solving the linear program explicitly

finds a list of virtual valuation functions and multipliers whose resulting interim forms con-
tain the optimal (truthful) interim form in their convex hull. Theorem 2.6 below captures
the structural aspect of their result.

THEOREM 2.6. (Implicit in [Cai et al. 2013]) For all BMeD instances, the optimal mecha-
nism can be implemented as a distribution over generalized objective optimizers. Specifically,
there exists a distribution ∆ over mappings (fδ1 , . . . , f

δ
n). Each mapping fδi takes types ti in

Ti to price multipliers mδ
i (ti) ∈ R and virtual valuation functions gδi (ti)(·) ∈ V×. The optimal

mechanism first samples (fδ1 , . . . , f
δ
n) from ∆, and on profile ~t, selects the outcome and price

vector arg maxx∈F,~p{O(~t, x, ~p) +
∑
im

δ
i (ti) · pi +

∑
i g
δ
i (ti)(x)}.

In the section below, we provide further details surrounding instantiations of Theo-
rems 2.5 and 2.6 as they pertain to the problem at hand.

2.2. Instantiations
The goal of this section is to provide more details of the instantiation of Theorems 2.5
and 2.6 to our setting, but not to provide proofs (for which we refer the reader to [Cai
et al. 2013]). We begin by describing the linear program that the reduction of [Cai et al.
2013] would try to solve for our setting. Below, F ([n + 1]m,Rm+1

+ ,REVENUE) denotes the
space of interim forms of all feasible (not necessarily truthful) mechanisms. Specifically,
(O,~π, ~p) ∈ F ([n + 1]m,Rm+1

+ ,REVENUE) if and only if there is a mechanism M that awards
each item at most once on every profile, is ex-post IR and ex-post budget respecting, awards
bidder i item j when she reports type ti with probability exactly πij(ti) (w.r.t. all other
bidders’ types and the randomness in the mechanism) and chargers bidder i price pi(ti)
in expectation (over all other bidders’ types and the randomness in the mechanism), and
whose expected revenue is exactly O. With this definition in mind, the linear program they
solve is stated below.

Variables:
— O, denoting the expected revenue of the interim form found.
— πij(ti) for all bidders i, items j, types ti, denoting the probability that bidder i receives

item j when reporting type ti.
— pi(ti) for all bidders i and types ti, denoting the expected price paid by bidder i when

reporting type ti.

Constraints:
(1)

∑
j πij(ti) · vij(ti) − pi(ti) ≥

∑
j πij(t

′
i) · vij(ti) − pi(t′i), for all bidders i and types ti, t′i,

guaranteeing that the interim form corresponds to a BIC mechanism.
(2)

∑
j πij(ti) ·vij(ti)−pi(ti) ≥ 0, for all bidders i and types ti, guaranteeing that the interim

form corresponds to an interim IR mechanism.8
(3) (O,~π, ~p) ∈ F ([n+1]m,Rm+1

+ ,REVENUE), guaranteeing that the interim form corresponds
to a feasible mechanism.

Maximizing:

8Actually, this constraint is redundant as we will also enforce that the mechanism be ex-post IR to be considered
feasible.



— O, the expected revenue.

The solution to this LP is the interim form of the optimal mechanism. The LP can be
solved in polynomial time, so long as we have a poly-time separation oracle for the space
F ([n+ 1]m,Rm+1

+ ,REVENUE). [Cai et al. 2013] shows that this can be obtained via an algo-
rithm for the related GOOP problem, which we instantiate in our setting below.

Budgeted-Additive Virtual Welfare Maximization. As discussed above, in order to find
(approximately) optimal mechanisms for our setting, we need to study the purely algorith-
mic problem GOOP([n+ 1]m,Rm+1

+ ,REVENUE), which we pose formally below.

GOOP([n+ 1]m,Rm+1
+ ,REVENUE):

INPUT: Values vij ≥ 0 and virtual values wij ∈ R for all i, j. Budget bi ∈ R+ and price
multiplier mi ∈ R for all i.
OUTPUT: An allocation ~x ∈ {0, 1}mn and prices ~p such that

∑
i xij ≤ 1 for all j (each item

awarded at most once),
∑
j xijvij ≥ pi (ex-post IR), pi ≤ bi (ex-post budget respecting), and

pi ≥ 0 (no positive transfers).
GOAL: Find arg max~x,~p{

∑
i(mi + 1)pi +

∑
ij xijwij} (virtual revenue plus virtual welfare).

Note that in the above formulation, we have folded cases where REVENUE evaluates
to −∞ into feasibility constraints on the output. We make two quick further observations
about the structure of GOOP([n + 1]m,Rm+1

+ ,REVENUE), and call the reformulation
Budgeted-Additive Virtual Welfare Maximization (BAVWM). Also, for cleanliness, we will
replace the input price multipliers mi by mi − 1 so that the term in the objective will be∑
imipi. This is w.l.o.g. as each mi could be any real number.

OBSERVATION 1. If mi > 0, the optimal choice for pi is always min{bi,
∑
j xijvij}. If

mi ≤ 0, the best choice for pi is 0.

OBSERVATION 2. For all possible solutions (~x, ~p), the quality of (~x, ~p) for the input in-
stance (~v, ~w,~b, ~m) is the same as for the instance (~v′, ~w,~b, ~m) where v′ij = min{vij , bi}, for all
i, j.

In light of these, we may set all negative mi to 0, and all vij to min{vij , bi} without
changing the problem, leading to the following reformulation.

Budgeted-Additive Virtual Welfare Maximization:
INPUT: Budget bi for all agents. Values vij ∈ [0, bi] for all agents and items. Price multiplier
mi ≥ 0 for all agents, and virtual value wij ∈ R for all agents and items.
OUTPUT: An allocation ~x ∈ {0, 1}mn such that

∑
i xij ≤ 1 for all j (each item awarded at

most once).
GOAL: Find arg max~x{

∑
i(mi min{bi,

∑
j xijvij}+

∑
j xijwij)}.

Note that in the above formulation, we no longer need to optimize over the price vector,
due to Observation 1. The problem can now be interpreted as just a welfare maximization
problem, where bidder i’s valuation function is the sum of a budgeted-additive function
(with non-negative item values) and an additive function (with possibly negative item val-
ues). Also, note that we can re-formulate the above problem to remove the multipliers (mi)i
from the input and the objective, by incorporating them in the bi’s and the vij ’s. We choose
to leave them in so that it is more transparent how the inputs to BAVWM are related to the
types reported by the bidders of the mechanism output by the Cai et al. [2013] reduction.

2.3. The Generalized Assignment Problem
Our main technical result will make use of a rounding algorithm for the Generalized
Assignment Problem. We give here a statement of the problem and a rounding theorem due
to Shmoys and Tardos [Shmoys and Tardos 1993].



Generalized Assignment Problem:
INPUT: Processing times pij ∈ R+ and costs cij ∈ R for all machines i and jobs j, capacities
Ti for all machines i.9
OUTPUT: An allocation ~x ∈ {0, 1}mn of jobs to machines such that

∑
i xij = 1 for all j (each

job is assigned) and
∑
j xijpij ≤ Ti (each machine processes at most its capacity).

GOAL: Find arg max~x{
∑
i,j xijcij} (total cost).10

Now, we provide an LP due to Shmoys and Tardos that outputs a fractional solution at
least as good as OPT.

Variables:

— xij , for all machines i and jobs j, denoting the fraction of job j assigned to machine i.

Constraints:

(1)
∑
i xij = 1, for all j, guaranteeing that every job is processed exactly once.

(2)
∑
j xij ≤ Ti, for all i, guaranteeing that no machine’s capacity is violated.

(3) xij = 0 if pij > Ti.

Maximizing:

—
∑
i,j xijcij , the total cost.

THEOREM 2.7. ([Shmoys and Tardos 1993]) The optimal fractional solution to the above
LP can be rounded in polynomial time to an integral solution such that:

(1)
∑
i xij = 1, for all j.

(2)
∑
j xij ≤ 2Ti, for all i.

(3)
∑
j xijcij ≥ OPT.

3. MAIN RESULTS
In Section 3.1 below, we provide our main computational result: a poly-time approximation
algorithm for BAVWM, which implies a poly-time truthful mechanism for revenue maxi-
mization that respects ex-post IR and ex-post budget constraints. In Section 3.2, we detail
the structure of the optimal mechanism in this setting, as well as our computationally effi-
cient mechanism from Section 3.1.

3.1. Computational Results
In this section, we provide a poly-time 3-approximation for BAVWM. We begin by writing a
LP relaxation, allowing the designer to award fractions of items as long as the total fraction
awarded doesn’t exceed 1. We split the fraction of item j awarded to bidder i into two parts,
x̄ij and x̂ij . Let x̄ij denote the fraction of item j assigned to agent i before exceeding bi.
And let x̂ij denote the fraction of item j assigned after. In other words, if xij is the fraction
of item j assigned to agent i, we have x̄ij + x̂ij = xij ,

∑
j x̄ijvij ≤ bi, and

∑
j x̄ijvij = bi if

for any j, x̂ij > 0. The idea is that assigning more of item j to agent i before exceeding his
budget increases both terms in the “goal” above, but assigning more after exceeding the
budget only affects the second term. The LP relaxation is as follows:

Variables:

9Traditionally, some consider only costs cij ∈ R+, but the result we cite applies for negative costs as well.
10Traditionally, it makes sense to minimize total cost. As costs are possibly negative, the use of max or min is
irrelevant.



— x̄ij , for all agents i and items j, denoting the fraction of item j assigned to agent i con-
tributing to both the budgeted-additive and additive terms in bidder i’s (virtual) welfare.

— x̂ij , for all agents i and items j, denoting the fraction of item j assigned to agent i
contributing to just the additive term in bidder i’s (virtual) welfare.

Constraints:

(1)
∑
i(x̄ij + x̂ij) ≤ 1, for all j, guaranteeing that no item is allocated more than once.

(2)
∑
j x̄ijvij ≤ bi, for all i, guaranteeing that contributions to the budgeted-additive term

are not overcounted.

Maximizing:

—
∑
ijmix̄ijvij+

∑
ij wij(x̄ij+x̂ij), the virtual welfare. Note that as eachmi ≥ 0 and vij ≥ 0,

the optimal solution will never have x̂ij > 0 unless
∑
j x̄ij = bi.

It is clear that any solution to BAVWM has a corresponding fractional solution to this LP.
So the goal is to solve this LP and round the fractional solution to an integral one without
too much loss. The idea is that the feasible region now looks pretty similar to that of the
generalized assignment problem, asking for an assignment of jobs to machines such that
the capacity of machine i is at most bi. We first prove the following rounding theorem, which
is a near-direct application of Theorem 2.7.

THEOREM 3.1. The optimal fractional solution to the above LP can be rounded in poly-
nomial time to an integral assignment such that:

(1)
∑
i(x̄ij + x̂ij) ≤ 1 for all j.

(2)
∑
j x̄ijvij ≤ 2bi for all i.

(3)
∑
ijmix̄ijvij +

∑
ij wij(x̄ij + x̂ij) ≥ OPT , where OPT is the value of the LP.

PROOF. We show how to interpret our LP as an instantiation of a fractional LP for the
generalized assignment problem, and then directly apply Theorem 2.7. We use pij to denote
processing times, cij to denote costs, and Ti to denote capacities in the created generalized
assignment problem instance.

— Machines:
(1) A dummy machine, 0.
(2) For all bidders i, a hat machine î (corresponding to the hat variables in our LP).
(3) For all bidders i, a bar machine ī (corresponding to the bar variables in our LP).

— Jobs: A job j for all items j.
— Processing times and costs:

(1) p0j = c0j = 0 for all j. T0 = 0.
(2) p̂ij = 0 for all j. ĉij = wij for all j. T̂i = 0.
(3) p̄ij = vij . c̄ij = mivij + wij . T̄i = bi.

The fractional LP referenced in Theorem 2.7 on this instance would then be (note that
the capacity constraints for machines 0 and all î are vacuously satisfied, and that there do
not exist any i, j for which pij > Ti by Observation 2):

Variables:

— x0j , for all jobs j, denoting the fraction of job j assigned to machine 0.
— x̄ij , for all machines i and jobs j, denoting the fraction of job j assigned to machine ī.
— x̂ij , for all machines i and jobs j, denoting the fraction of job j assigned to machine î.

Constraints:

(1) x0j +
∑
i(x̄ij + x̂ij) = 1, for all j, guaranteeing that every job is allocated exactly once.



(2)
∑
j x̄ijvij ≤ bi, for all i, guaranteeing that the total processing time on machine ī is at

most bi.

Maximizing:

—
∑
ijmix̄ijvij +

∑
ij wij(x̄ij + x̂ij), the cost.

It’s clear that this LP is exactly the same as our LP, just with an additional dummy bidder
0 who collects all unallocated fractions of items. By Theorem 2.7, the optimal fractional
solution to this LP can be rounded in polynomial time to an integral solution whose total
cost is at least as large, but where the capacity of machine ī could be as large as 2bi, which
is exactly an integral allocation of items to bidders with the desired properties.

After applying Theorem 3.1, we now have an integral solution that is at least as good
as the optimum, except our solution is infeasible. It’s infeasible because it’s “getting credit”
for (virtual) welfare in the budgeted-additive term that is perhaps up to twice the budget
(i.e. up to 2bi). An “obvious” fix to this problem might be to take this integral solution and
only take credit for budgeted-additive values up to bi, thereby making the solution feasible
again. Unfortunately, because the objective is mixed sign, the resulting solution doesn’t
provide any approximation guarantee.11 Instead, we provide a simple procedure to select a
feasible suballocation of this infeasible one that loses a factor of 3.

THEOREM 3.2. Given an integral allocation ~x satisfying
∑
i x̄ij + x̂ij ≤ 1 for all j,∑

j x̄ijvij ≤ 2bi for all i, and
∑
ijmix̄ijvij +

∑
ij wij(x̄ij + x̂ij) = C, one can find in poly-

time an integral allocation ~y such that:

(1)
∑
i(ȳij + ŷij) ≤ 1 for all j.

(2)
∑
j ȳijvij ≤ bi for all i.

(3)
∑
ijmiȳijvij +

∑
ij wij(ȳij + ŷij) ≥ C/3.

PROOF. For each i, we wish to partition the set of items assigned to i via x̄ij (of the
infeasible integral solution), S, into three disjoint sets S1

i , S
2
i , S

3
i such that

∑
j∈Sk

i
vij ≤ bi

for all k. This is always possible: consider sorting the elements in decreasing order of vij
and greedily adding them one at a time to the Ski with minimal weight so far. Assume
for contradiction that some item j∗, when added, pushes some Ski from below bi to above
bi. Then without j∗, each of S1

i , S
2
i , S

3
i must have had weight strictly larger than bi − vij∗ .

As the total weight in all three (without j∗) is at most 2bi − vij∗ , this means that 2bi −
vij∗ > 3(bi − vij∗) ⇒ vij∗ > bi/2. But as we processed elements in decreasing order of vij ,
this would imply that j∗ was the third (or earlier) item processed, meaning that some set
must have been empty, and j∗ couldn’t have possibly pushed it over the limit (as vij ≤ bi
for all j). Therefore, at termination we must have

∑
j∈Sk

i
vij ≤ bi for all k. Now, define

k∗ = arg maxk{
∑
j∈Sk

i
mivij + wij}. Let ȳij = 1 iff j ∈ Sk∗i , and ŷij = x̂ij for all j.

It’s clear that
∑
j ȳijvij ≤ bi for all i. As ȳij ≤ x̄ij for all i, j, it’s also clear that

∑
i ȳij+ŷij ≤

1 for all j. Finally, by choice of k∗ it’s also clear that
∑
ij(mivij + wij)ȳij ≥

∑
ij(mivij +

wij)x̄ij/3, and therefore
∑
ijmiȳijvij +

∑
ij wij(ȳij + ŷij) ≥ C/3, as desired.

Combining Theorems 3.1 and 3.2 yields a feasible, integral allocation that is a 3-
approximation by rounding the fractional solution output by our LP, and it is easy to see
that the entire procedure runs in polynomial time.

11Consider, for example, the following instance: there is one buyer and two items. v11 = v12 = 3, b1 = 3, w11 =
w12 = −2. Then the allocation that awards both items and “gets credit” for up to 2bi is believed to have virtual
welfare 2. However, the correctly computed virtual welfare of this allocation is actually −1, which clearly provides
no meaningful approximation. Instead we must develop a procedure that, on this instance, would allocate just one
of the items.



THEOREM 3.3. There is a poly-time 3-approximation algorithm for Budgeted-Additive
Virtual Welfare Maximization, which is a reformulation of GOOP([n+1]m,Rm+1

+ ,REVENUE).
Therefore, for all ε > 0, there is a poly-time (ε, 3)-approximation algorithm for BMeD([n +
1]m,Rm+1

+ ,REVENUE). Specifically, if ` is the input length to an instance of BMeD([n +

1]m,Rm+1
+ ,REVENUE), the algorithm terminates in time poly(`, 1/ε) and succeeds with prob-

ability 1− exp(−poly(`, 1/ε)).

We conclude this section with a remark about the special case of a single (or small con-
stant) number of items. Notice that BAVWM can be solved exactly by exhaustive search in
time poly(nm). If m is a small constant, exhaustive search may be computationally feasible,
resulting in an exact algorithm (instead of a 3-approximation).

Remark 3.4. Budgeted-Additive Virtual Welfare Maximization can be solved exactly in
time poly(nm) by exhaustive search. Therefore, for all ε > 0, there is an (ε, 1)-approximation
algorithm for BMeD([n+ 1]m,Rm+1

+ ,REVENUE). Specifically, if ` is the input length to an in-
stance of BMeD([n+1]m,Rm+1

+ ,REVENUE), the algorithm terminates in time poly(`, nm, 1/ε)
and succeeds with probability 1− exp(−poly(`, 1/ε)).

Finally, we remark that the single-item case is especially simpler than even the two item
case. We refer the reader to [Cai et al. 2012, 2013] for complete details, but essentially the
sampling procedure that results in the ε error of Theorem 2.5 can be replaced by an exact
computation only in the single item case (and not even in the two item case), and ε can be
set to exactly 0.

Remark 3.5. Budgeted-Additive Virtual Welfare Maximization withm = 1 can be solved
exactly in time poly(n) by exhaustive search: there are only n possible outcomes, corre-
sponding to assigning the item to exactly one of the agents. Therefore, there is a (0, 1)-
approximation algorithm (i.e. an exact algorithm) for BMeD([n + 1],R2

+,REVENUE) (i.e.
the single item case). Specifically, if ` is the input length to an instance of BMeD([n +
1],R2

+,REVENUE), the algorithm terminates in time poly(`), and succeeds with probabil-
ity 1.

3.2. Structural Results
In this section, we discuss the structure of the optimal mechanism, and of the computation-
ally efficient mechanism from Section 3.1. We begin by characterizing the optimal mecha-
nism by combining Theorem 2.6 with Observation 1.

THEOREM 3.6. In any BMeD([n + 1]m,Rm+1
+ ,REVENUE) instance, the optimal mecha-

nism can be implemented as a distribution over virtual welfare maximizers. Specifically,
there exists a distribution ∆ over mappings (fδ1 , . . . , f

δ
n). Each mapping fδi maps types

(~vi, bi) ∈ Rm+1
+ to a multiplier mδ

i (~vi, bi) ∈ R+ and a vector ~wδ(~v, bi) ∈ Rm. Define φδi to
be the mapping that takes as input types (~vi, bi) ∈ Rm+1

+ and outputs a valuation func-
tion φδi (~vi, bi)(·) with φδi (~vi, bi)(S) = mδ

i (~vi, bi) · min{bi,
∑
j∈S vij} +

∑
j∈S w

δ
ij(~vi, bi). The al-

location rule of the optimal mechanism first samples (fδ1 , . . . , f
δ
n) from ∆, and on profile

(~v,~b), allocates the items according to arg maxS1t...tSn⊆[m]{
∑
i φ

δ
i (~vi, bi)(Si)}. Furthermore, if

mδ
i (~vi, bi) > 0, bidder i is charged min{bi,

∑
j∈Si

vij}. Ifmδ
i (~vi, bi) = 0, then bidder i is charged

0.

PROOF. The proof starts with an application of Theorem 2.6 to the problem BMeD([n +
1]m,Rm+1

+ ,REVENUE). By Observation 1, the joint optimization over allocations x and price
vectors ~p can be accomplished by transforming the optimization into one that depends only
on the allocation. Once the allocation is found, optimization of the price vector follows as in
Observation 1.



We remark that the virtual types involved in Theorem 3.6 have valuation functions that
are the sum of a budgeted-additive function, and an additive function (the latter may have
negative item values). We also note that the budgeted-additive component depends in a
very structured way on the input type (~vi, bi). Specifically, bi is turned into a hard cap on
the bidder’s maximum valuation instead of a hard budget on her ability to pay, and the
additive valuation ~vi is kept the same, forming a budgeted-additive function that is scaled
by a positive multiplier mi. The multiplier mi and additional values ~wi may show little
structure with respect to the input types (or perhaps none at all).

We also remark that the structure is especially simple in the case of a single item, because
a budgeted-additive function for a single item is just a typical valuation function (where the
bidder’s value for the item is the minimum of her value and her budget). Specifically, the
virtual type parameterized by mδ

i (vi, bi) and wi(vi, bi) values the item at mi min{vi, bi} +
wi(vi, bi). This observation leads to the following simplification:

Remark 3.7. In any BMeD([n+1],R2
+,REVENUE) instance (i.e. the single item case), the

optimal mechanism can be implemented as a distribution over virtual value maximizers.
Specifically, there exists a distribution ∆ over mappings (fδ1 , . . . , f

δ
n). Each mapping fδi maps

types (vi, bi) ∈ R2
+ to an indicator bit mδ

i (vi, bi) ∈ {0, 1} and a virtual value φδi (vi, bi). The
allocation rule of the optimal mechanism first samples (fδ1 , . . . , f

δ
n) from ∆, and on profile

(~v,~b), allocates the item to any bidder i∗ ∈ arg maxi{φδi (vi, bi)} if her virtual value is non-
negative, and doesn’t allocate the item otherwise. Furthermore, if mδ

i∗(vi∗ , bi∗) = 1, bidder
i∗ is charged min{bi∗ , vi∗}. If mδ

i∗(vi∗ , bi∗) = 0, then bidder i∗ is charged 0.

We conclude with a statement regarding the format of our computationally efficient mech-
anisms from Section 3.1. This is an instantiation of Algorithm 2 in [Cai et al. 2013], which
is used to prove Theorem 2.5.

THEOREM 3.8. The mechanism providing the guarantee of Theorem 3.3 has the follow-
ing format:
Phase One, Find the Mechanism:
(1) Write a linear program that optimizes revenue over the space of truthful, feasible interim

forms (Section 2.2).
(2) Pick an ε > 0. Using the algorithm developed in Section 3.1, and the reduction of [Cai

et al. 2013], solve this linear program approximately.
(3) This yields an interim form corresponding to a mechanism that is an (ε, 3)-

approximation.
(4) The linear program also outputs auxiliary information in the form of a distribution ∆

over mappings (fδ1 , . . . , f
δ
n) of the same format from Theorem 3.6.

Phase Two, Run the Mechanism:
(1) Sample a mapping from ∆ (provided in Phase One).
(2) On profile (~v, b), run the approximation algorithm of Section 3.1 for Budgeted-Additive

Virtual Welfare Maximization, with input budgets bi, input values vij , input price multi-
pliers mδ

i (~vi, bi), and input virtual values wδij(~vi, bi). Select this allocation.
(3) If mδ

i (~vi, bi) > 0, charge bidder i the minimum of their budget and their value for the
items they receive. Otherwise, charge them nothing.

Note that this mechanism has basically the same structure as the optimal mechanism,
except that on every profile it only approximately maximizes virtual welfare (and we also
first have to find the mechanism, which is completely described by the distribution ∆). In
the special case of a single item, the structure can again be simplified.

Remark 3.9. In the special case of a single item, the following algorithm finds the opti-
mal mechanism in polynomial time:
Phase One, Find the Mechanism:



(1) Write a linear program that optimizes revenue over the space of truthful, feasible in-
terim forms (Section 2.2).

(2) Using the reduction of [Cai et al. 2013] and the observation in Remark 3.5 that
Budgeted-Additive Virtual Welfare Maximization with m = 1 can be solved exactly, solve
this linear program exactly. This yields an interim form corresponding to the optimal
mechanism.

(3) The linear program also outputs auxiliary information in the form of a distribution ∆
over mappings (fδ1 , . . . , f

δ
n) of the same format from Remark 3.7.

Phase Two, Run the Mechanism:

(1) Sample a mapping from ∆ (provided in Phase One).
(2) On profile (~v, b), award item j to any bidder i∗ ∈ arg maxi{φδi (vi, bi)} if her virtual value

is non-negative. Don’t allocate item j otherwise.
(3) If mδ

i (~vi, bi) = 1, charge bidder i the minimum of their budget and their value for the
items they receive. Otherwise, charge them nothing.
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